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Abstract

In this paper we demonstrate a new approach that uses regional/continental MODIS (MODerate Resolution Imaging Spectroradiometer)
derived forest cover products to calibrate Landsat data for exhaustive high spatial resolution mapping of forest cover and clearing in the Congo
River Basin. The approach employs multi-temporal Landsat acquisitions to account for cloud cover, a primary limiting factor in humid tropical
forest mapping. A Basin-wide MODIS 250 m Vegetation Continuous Field (VCF) percent tree cover product is used as a regionally consistent
reference data set to train Landsat imagery. The approach is automated and greatly shortens mapping time. Results for approximately one third of
the Congo Basin are shown. Derived high spatial resolution forest change estimates indicate that less than 1% of the forests were cleared from
1990 to 2000. However, forest clearing is spatially pervasive and fragmented in the landscapes studied to date, with implications for sustaining the
region's biodiversity. The forest cover and change data are being used by the Central African Regional Program for the Environment (CARPE)
program to study deforestation and biodiversity loss in the Congo Basin forest zone. Data from this study are available at http://carpe.umd.edu.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Regional-scale mapping of humid tropical forests

Operational landscape characterization and monitoring of the
humid tropics is important to studies concerning habitat and
biodiversity, management of forest resources, human liveli-
hoods and biogeochemical and climatic cycles (Curran and
Trigg, 2006; Avissar and Werth, 2005; FAO, 2005; SCBD,
2001; IGBP, 1998; LaPorte et al., 1998). Studies quantifying
humid tropical deforestation over large areas using time-series
high spatial resolution satellite data sets have been prototyped
(Skole and Tucker, 1993; Townshend et al., 1995). However,
operational implementation of such methods for long-term
monitoring are only now being operationalized (INPE, 2002;

Asner et al., 2005). The primary limitations to large area high
spatial resolution monitoring include the development of
generic and robust methods, overcoming data quality issues,
and having the resources to purchase required data sets. Con-
cerning methods, many land cover mapping activities rely on
photo-interpretation, or other approaches that are labor-
intensive, costly, and difficult to replicate in the consistent
manner required for long-term monitoring. The primary data
limitation for humid tropical forest monitoring is persistent
cloud cover that confounds efforts to operationalize land cover
and change characterizations (Asner, 2001; Helmer and
Ruefenacht, 2005; Ju and Roy, in press). Regarding the high
cost of high spatial resolution data sets, researchers often use the
data they can afford, not the data they truly need. For a region
like the humid tropics, data needs are intensive in order to over-
come the presence of cloud cover.

This paper presents an approach to address these limitations by
employing a multi-resolution methodology for mapping forest
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cover and deforestation within the humid tropical forests of the
Congo River Basin. The MODIS Vegetation Continuous Fields
(VCF) algorithm (Hansen et al., 2003) is used to create a regional
MODIS 250 m forest/non-forest cover map which is in turn used
to drive high spatial resolution Landsat forest characterizations.
The automated use of the MODIS forest characterization to pre-
process (normalize) and label Landsat data inputs in generating
regional-scale forest cover and change maps for the Congo Basin
is demonstrated. Data cost limitations cannot be resolved algo-
rithmically, although the method is developed so that additional
imagery can be ingested and new products automatically derived
upon acquisition.

The research strategy engaged herein focuses on the oper-
ationalization of large area forest cover and forest cover change
monitoring. Information on where and how fast forest change is
taking place can be integrated with other geospatial data on the
types and causes of change to better inform resource managers and
earth systemmodelers. The ability to accurately assess forest cover
dynamics in a timely fashion will contribute to new applications,
such as the Reducing Emissions from Deforestation and Degra-
dation (REDD) initiative (UNFCCC, 2005). Synoptic measure-
ments of change can quantify the displacement of deforestation
activities within and between countries and lead to the har-
monization of national-scale statistics. To achieve this end,
automated or semi-automated procedures that work at regional
scales will be needed; such methods must be accurate, internally
consistent, produced in a timely fashion and rely on remotely
sensed inputs. Spatially explicit forest cover and forest change
maps derived from remotely sensed data will be integral to the
future monitoring of forests in support of both basic earth science
research and policy formulation and implementation.

1.2. Congo Basin forest monitoring

The CARPE program (Central African Regional Program for
the Environment) is a long-term initiative by USAID to address
the issues of forest management, human livelihoods, and bio-
diversity loss in the Congo Basin forest zone (http://carpe.umd.
edu). CARPE works within the framework of the Congo Basin
Forest Partnership (CBFP, 2005, 2006), an international associa-
tion of government and non-government organizations with the
goal of increasing communication and coordination between in-
region projects and policies to improve the sustainable manage-
ment of the Congo Basin forests and the standard of living of the
region's inhabitants. The methods presented here are a contribu-
tion to these efforts by advancing the creation of internally
consistent, rapid assessments of the forested landscapes of the
Congo Basin.

Unlike the forests of the Amazon Basin and Insular
Southeast Asia, Central Africa does not exhibit large-scale
agro-industrial clearing. As such, MODIS data offer little value
in a monitoring sense as change events occur typically at a finer
scale than is detectable with 250 m MODIS data. Deforestation
in the Congo Basin occurs at fine scales and is caused largely by
shifting agricultural activities (CBFP, 2005) that are correlated
with local populations (Zhang et al., 2005). Commercial log-
ging is also present, but is highly selective and typically only
detectable via the extension of new logging road networks into
the forest domain (LaPorte et al., 2007). Current estimates of
tropical forest change from the latest UNFAO Forest Resource
Assessment (FAO, 2005) indicate Africa as having annual rates
of deforestation in excess of 4 million hectares per year. How-
ever, past satellite-based surveys indicate much lower rates of

Fig. 1. Overview of CARPE landscapeswith completed forest cover and forest changemapping areas highlighted in red. The blue outline delineates processed Landsat data
to date, lavender other portions of processed CARPE landscapes, and green CARPE landscapes currently being analyzed. CARPE landscape boundaries are as follows: 1)
Monte Alen–Mont de Cristal Inselbergs Forest, 2) Gamba–Mayumba–Conkouati, 3) Lopé–Chaillu–Louesse Forest, 4) Dja–Minkébé–Odzala Tri-National, 5) Leconi–
Batéké–Léfini, 6) Sangha Tri-National Forest, 7) Lac Télé–LacTumba SwampForest, 8)Maringa–Lopori–Wamba, 9) Salonga–Lukenie–Sankuru, 10) Ituri–Epulu–Aru, 11)
Maiko–Lutunguru Tayna–Kahuzi–Biega Forest, and 12) Virungas.
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change for tropical Africa (Achard et al., 2002; Hansen and
DeFries, 2004). Improved high spatial resolution monitoring is
required to better determine the rates and spatial extents of
forest cover change within the humid tropical forests of Central
Africa.

2. Study area

The tropical forest ecosystems of the Congo Basin represent
the largest and most diverse forest massif on the African
continent and the second largest extent of tropical rain forest in
the world, next to the Amazon Basin (Wilkie et al., 2001; CBFP,
2005). As defined by the Congo Basin Forest Partnership, the
Congo Basin forests cover an area of nearly 2 million km2. The
Congo Basin in this context is not defined strictly by the
drainage area of the Congo River, but by the forest zone
extending from the Atlantic Ocean in the west to the Albertine
Rift Valley in the east, and spanning the equator by nearly 7°
north and south (CBFP, 2005).

The Congo Basin forests, also known as the Lower Guineo–
Congolian forests as defined by White (1983), consist
predominately of humid evergreen broadleaf forests with
seasonality increasing with latitude. Seasonality and corre-
sponding cloud cover are related to the movement of the inter-
tropical convergence zone. Cloud cover is typically high nearer
the equator, and is persistent in the western Basin due to the
warming and rising of moisture-laden air as it moves from the
Gulf of Guinea onto the central African land mass. A recent
global study of the availability of cloud-free MODIS data for
compositing indicated that equatorial Africa was one of several
regions affected by high cloud cover at the time of MODIS
overpass (Roy et al., 2006).

The CBFP and CARPE have identified 12 priority land-
scapes for monitoring biodiversity, deforestation and other
measures of disturbance within the remaining intact forest zones
of the Congo Basin. The methodology presented here is being
employed exhaustively across the basin, where high spatial
resolution Landsat data are available, to determine rates of
change. This paper reports results from three of the landscapes
covering approximately one third of the basin that are broadly
representative of those in the Congo Basin–Maringa–Lopori–
Wamba, Salonga–Lukenie–Sankuru, and Sangha Tri-National
(Fig. 1).

3. Data

Landsat data are available in 185 km×170 km scenes
defined in a Worldwide Reference System of path (groundtrack
parallel) and row (latitude parallel) coordinates (Arvidson et al.,
2001). In this study we use as many viable Landsat data sets as
possible. Ninety-eight Landsat acquisitions, including Landsat 4,
5 and 7 data sensed from 1984 to 2003 (just prior to the Landsat
ETM+ scan line corrector failure) and covering 20 scenes (unique
path/row) over the Maringa–Lopori–Wamba, Salonga–Luke-
nie–Sankuru, and Sangha Tri-National landscapes were obtained
(Table 1). The reflective Landsat bands, 4 (0.78–0.90 μm), 5
(1.55–1.75 μm), 7 (2.09–2.35 μm), and the thermal band 6

(10.4–12.5 μm) were used. The three shortest visible wavelength
Landsat bands were not used due to their sensitivity to atmo-
spheric contamination (Ouaidrari and Vermote, 1999).

The daily L2G 250 m and the 500 m MODIS land surface
reflectance products (Vermote et al., 2002) and the 8-day L3
1 km MODIS land surface temperature product (Wan et al.,

Table 1
Landsat data used in this study

Maringa–Lopori–Wamba landscape
179059 178059 177059
January 21, 1987 September 08, 1986 December 22, 1986
December 10, 1994 January 14, 1990 December 25, 1990
August 18, 2002 January 20, 1995 October 20, 2001
March 05, 2000 January 28, 2001 December 26, 2002

February 03, 2003
April 08, 2003

179060 178060 177060
January 05, 1987 January 14, 1990 August 26, 1984
January 21, 1987 January 20, 1995 December 22, 1986
October 07, 1994 December 27, 2000 January 04, 1986
March 05, 2000 April 08, 2003 October 20, 2001
December 24, 2002 December 26, 2002

February 25, 2002

Sangha Tri-National landscape
182058 181058 180058
November 26, 1990 January 16, 1986 December 11, 1986
February 12, 1999 December 24, 1994 November 15, 1994
May 16, 2001 March 3, 2000 December 31, 2002
April 1, 2002 January 7, 2003 February 1, 2003
December 29, 2002
February 15, 2003

182059 181059 180059
December 9, 1986 September 7, 1984 July 20, 1986
December 28, 1990 October 9, 1984 November 15, 1994
February 12, 1999 December 2, 1986 November 23, 2000
November 8, 2001 November 12, 1999 February 1, 2003
April 1, 2002 February 18, 2001
February 15, 2003 January 7, 2003

Salonga–Lukenie–Sankuru landscape
179061 178061 177061
September 9, 1984 January 14, 1990 January 4, 1986
February 6, 1987 January 20, 1995 December 12, 1994
October 7, 1994 February 27, 2000 February 25, 2002
May 3, 2000 December 27, 2000 August 20, 2002
May 3, 2002 April 8, 2003

179062 178062 177062
September 9, 1984 October 20, 1984 August 26, 1984
February 19, 1986 January 14, 1990 January 10, 1991
February 12, 1995 January 20, 1995 April 8, 2000
May 14, 2002 February 27, 2000 February 6, 2001

April 15, 2000 June 14, 2001

179063 178063
May 26, 1986 September 24, 1992
February 12, 1995 December 3, 1994
October 15, 2000 June 24, 2002
June 28, 2001 April 8, 2003
August 15, 2001
May 14, 2002
May 17, 2003
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2002) were used in this study. These MODIS land products are
defined in the sinusoidal map projection in 10×10° land tiles
(Wolfe et al., 1998), with eight tiles covering the Congo Basin.
All of the MODIS Collection 4 products available from 2000 to
2003 over these 8 tiles were used. The seven MODIS land
surface reflectance bands were used: the two 250 m red (0.620–
0.670 μm) and near-infrared (0.841–0.876 μm) bands, and the
five 500 m bands: blue (0.459–0.479 μm), green (0.545–
0.565 μm), mid-infrared (1.230–1.250 μm), mid-infrared
(1.628–1.654 μm), and mid-infrared (2.105–2.155 μm).

4. Methods

The methodology is illustrated in Fig. 2. First, a regional
MODIS 250 m forest non-forest map is generated using a
regression tree approach (Fig. 2 (1)), and after resampling to a
common coordinate system (Fig. 2 (2)), is used to perform
radiometric normalization and to reducedeleteriousLandsat atmo-
spheric and sun-surface-sensor spectral variations (Fig. 2 (3)).
Each normalized Landsat image has standardized classification
tree models applied to detect per-pixel clouds and shadows,
(Fig. 2 (4)). Landsat-scale forest cover is then mapped using a
classification tree approach with training labels derived from the
MODIS 250 m forest map (Fig. 2 (5)). The Landsat forest
estimates and associated spectral bands and cloud and shadow
flags are composited to create decadal, pre-1996 and post-1996,
composite forest cover products (Fig. 2 (6)). A deforestation clas-
sification tree model is applied to these composites to produce a
per-pixel forest change assessment (Fig. 2 (7)). Before describing
the methodology in detail, an overview of regression trees and
their application for satellite classification is first described.

4.1. Classification and regression trees

The algorithmic tool used to characterize forest cover and
change, as well as to evaluate the presence of cloud and shadow
artifacts, is the decision tree. Decision trees are hierarchical clas-
sifiers that predict class membership by recursively partitioning a
data set into more homogeneous subsets, referred to as nodes
(Breiman et al., 1984). This splitting procedure is followed until a
perfect tree is created, if possible, composed only of pure terminal
nodes where every pixel is discriminated from pixels of other
classes, or until preset conditions are met for terminating the tree's
growth. Trees can accept either categorical data in performing clas-
sifications (classification trees) or continuous data in performing
sub-pixel percent cover estimations (regression trees). For clas-
sification trees, a deviance measure is used to split data into nodes
that are more homogeneous with respect to class membership than
the parent node. For regression trees, a sum of squares criterion is
used to split the data into successively less varying subsets.

Tree-based algorithms offer several advantages over other
characterization methods and have been used with remotely
sensed data sets (Michaelson et al., 1994; Hansen et al., 1996;
DeFries et al., 1997; Friedl and Brodley, 1997). They are
distribution-free, allowing for the improved representation of
training data within multi-spectral space. In addition, the tree
structure enables interpretation of the explanatory nature of the

independent variables. A number of software packages are avail-
able, in this study we use the Splus package (Clark and Pergibon,
1992).

Multiple independent runs of decision trees via sampling with
replacement allow for more reliable results. This procedure is
called bagging (Breiman, 1996), and typically employs a per-
pixel voting procedure based on n derived classification trees to
label eventual outputs. Per node likelihoods, and not per node
class labels, may also be used to derive mean class membership
likelihood values for each pixel. By repeatedly sampling the
training data to grow multiple tree models, isolated overfitting
within any individual tree is reduced by calculating an averaged
multi-tree output. Unless otherwise stated, the analysis presented
here employs bagging procedures to derive thematic outputs.

4.2. Generate regional MODIS 250 m forest non-forest cover
map

The first step of the methodology is to generate a regional
forest non-forest map at moderate spatial resolution. The MODIS
Vegetation Continuous Field (VCF) method (Hansen et al., 2003)
is used, modified for application to the Congo Basin, to create a
MODIS 250 m percent tree cover map. The percent tree cover
map is then thresholded into forest and non-forest classes.

Monthly compositeswere generated from four years ofMODIS
data (2000–2003), employing the same approach used to generate
composites for the 250 m MODIS Vegetation Cover Change
product (Zhan et al., 2002). In this compositing approach, the two
MODIS 250 m bands are composited based on the MODIS land
surface reflectance quality assessment flags and an observation
coverage criterion to select the highest quality, nearest-nadir 250m
observation for each month (Carroll et al., in review). The five
500m surface reflectance band values are retained by selecting the
500 m observation lying closest to each composited 250 m pixel
for the selected day. Normalized difference vegetation index
(NDVI) values are computed for each pixel from the 250m red and
near-infrared composited values. Monthly 1 km land surface
temperature values are selected as those with the maximum land
surface temperature value over the month (Cihlar, 1994; Roy,
1997) and resampled to 250 m pixels.

Thirty-four MODIS image metrics, defined following the
approach of Hansen et al. (2002a), Hansen and DeFries (2004),
were extracted from the four years of monthly composites. The
metrics are summarized in Table 2, and three examples are
illustrated in Fig. 3a. The metrics illustrated in Fig. 3a are the
mean of the three lowest MODIS land surface reflectance red
(620–670 nm), near-infrared (841–876 nm), and middle-
infrared (1628–1654 nm) monthly composite values. These
three metrics provide a time-integrated multi-year data set with
minimal cloud contamination, and correspond largely with local
growing season conditions.

In creating this Basin-wide forest cover map, we employed
the standard MODIS VCF algorithm (Hansen et al., 2002a)
using over 2 million training pixels derived from 15 Landsat
images. A single perfectly fit regression tree was created using
50% of the training data, and pruned using the remaining set-
aside training data. The training data were the dependent
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Fig. 2. Flow diagram of multi-resolution forest cover mapping and change detection methodology where the following text sub-headings from the Methods section are
highlighted: 1) Generate regional MODIS 250 m forest non-forest cover map forest non-forest cover map, 2) Georectification/resampling of satellite data, 3) Landsat
normalization, 4) Landsat cloud and shadow flagging, 5) Landsat decision tree forest mapping procedure, 6) Landsat compositing, 7) Landsat forest change
mapping.
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variable and the 4-year metrics (Table 2) were the independent
variables. Importantly, these training data were not used in the
Landsat classification described later in this paper.

The resulting 250 m percent tree cover map was then
thresholded into forest and non-forest classes. Pixels with
percent tree cover greater than or equal to 60% were labeled as
forest and those with less estimated tree cover were labeled as
non-forest. This definition conforms with several physiognomic
classification schemes including the International Geosphere
Biosphere Programme land cover classification scheme
(Rasool, 1992). In addition, two other categorical land cover
classes, water and rural complex, were characterized by
independently running a classification tree on the MODIS
metrics (Table 2). Water training data were derived using the 15
Congo VCF classified Landsat images. Water pixels were
treated as non-land and not used in the subsequent analysis. The
rural complex class is a mosaic of tree regrowth, settlement,
cropland and plantation (Mayaux et al., 1999) that includes
significant areal tree cover but of an immature form. This class
is essentially a disturbance category that is not reliably detected
by the global MODIS VCF algorithm. Rural complex class
training data were derived from the same 15 Congo VCF

classified Landsat images via photo-interpretation. The result-
ing 250 m rural complex classified MODIS pixels were labeled
as non-forest. Again, the water and rural complex training
information were not used in the Landsat classification
described later in this paper.

4.3. Georectification/resampling of satellite data

The MODIS 250 m forest non-forest map and the Landsat
data (Table 1) were geometrically corrected into registration
with the Landsat GeoCover data set. The GeoCover data set is
defined in the UTM coordinate system with a geolocation
accuracy of 50 m (Tucker et al., 2004). The Landsat data were
georeferenced using an automated ground control point
matching algorithm (Kennedy and Cohen, 2003) and by
bilinear resampling. The MODIS 250 m forest map was
reprojected from the MODIS sinusoidal projection to the
Geocover projection by nearest neighbor resampling. To reduce
spurious change detection due to residual misregistration effects
(Townshend et al., 1992; Roy, 2000), the Landsat data were
resampled to a spatial resolution of 57 m.

4.4. Landsat normalization

The radiometric consistency of Landsat data, such as used in
this study (Table 1), may change due to sensor calibration
changes, differences in illumination and observation angles, varia-
tion in atmospheric effects, and phenological variations (Coppin
et al., 2004). Normalization of the Landsat data to remove or
reduce the impacts of these effects is required prior to application
of generic models for flagging the non-systematic presence of
undesired cloud and shadow effects across all Landsat data, and to
subsequently apply a regional deforestation mapping model.

Several methods of radiometric normalization have been
proposed, with the dark-object subtraction (DOS) method widely
used due to its methodological simplicity (Chavez, 1996). Since
the approach focuses on the infrared Landsat bands 4, 5 and 7,
more advanced methods that include haze corrections for the
visible bands such as that of Carlotto (1999), are not employed.
We implement a simple but robust normalization methodology
that uses the 250 mMODIS forest map.MODIS forest/non-forest
boundaries are spatially eroded by two 250 m pixels using the
morphological erode operator (Serra, 1982) to identify interior
forest pixels. These intact forest pixels are considered as dark-
objects for DOS normalization and to model and remove linear
variations occurring across each Landsat scene.

In the DOS normalization, uncontaminated land Landsat
pixels are first identified as those with Landsat band 6 thermal
brightness temperature values greater than or equal to 19 °C.
This threshold was arrived at empirically by testing various
candidate values. The flagged pixels are intersected with the
unambiguous 250 m MODIS intact forest pixels. From this
combined mask, a median forest value for each reflective band
is computed. In this way, the forested lands are treated as a dark-
object, and all the reflective bands are rescaled to the same
reference forest value, defined for convenience as digital
number value 100.

Table 2
MODIS 250 m metrics derived from monthly composite imagery for 2000–
2003

Mean of 3 darkest band 1 reflectance monthly composites
Mean of 3 darkest band 2 reflectance monthly composites
Mean of 3 darkest band 3 reflectance monthly composites
Mean of 3 darkest band 4 reflectance monthly composites
Mean of 3 darkest band 5 reflectance monthly composites
Mean of 3 darkest band 6 reflectance monthly composites
Mean of 3 darkest band 7 reflectance monthly composites
Mean of 3 greenest NDVI monthly composites
Mean of 3 warmest LST monthly composites
Mean band 1 reflectance of 3 warmest monthly composites
Mean band 2 reflectance of 3 warmest monthly composites
Mean band 3 reflectance of 3 warmest monthly composites
Mean band 4 reflectance of 3 warmest monthly composites
Mean band 5 reflectance of 3 warmest monthly composites
Mean band 6 reflectance of 3 warmest monthly composites
Mean band 7 reflectance of 3 warmest monthly composites
Mean NDVI of 3 warmest monthly composites
Mean band 1 reflectance of 3 greenest monthly composites
Mean band 2 reflectance of 3 greenest monthly composites
Mean band 3 reflectance of 3 greenest monthly composites
Mean band 4 reflectance of 3 greenest monthly composites
Mean band 5 reflectance of 3 greenest monthly composites
Mean band 6 reflectance of 3 greenest monthly composites
Mean band 7 reflectance of 3 greenest monthly composites
Mean LST of 3 greenest monthly composites
Ranked band 1 reflectances from single monthly composite
Ranked band 2 reflectances from single monthly composite
Ranked band 3 reflectances from single monthly composite
Ranked band 4 reflectances from single monthly composite
Ranked band 5 reflectances from single monthly composite
Ranked band 6 reflectances from single monthly composite
Ranked band 7 reflectances from single monthly composite
Ranked NDVI from single monthly composite
Ranked LST from single monthly composite

See text for MODIS band descriptions.
NDVI signifies Normalized Difference Vegetation Index, and LST is Land
Surface Temperature.
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Fig. 3. a) Three example MODIS metrics derived over the study area from 4 years (2000 to 2003) of monthly composites. Red, blue and green are, the mean of the three
lowest MODIS land surface reflectance red (620–670 nm), near-infrared (841–876 nm), and middle-infrared (1628–1654 nm) band monthly composited values
respectively. Thirty-four such metrics were used to generate the Basin-wide forest cover map (Table 2). b) MODIS 250 m land cover for forest density classes made
from VCF Landsat training data and 4 years of MODIS inputs. Rural complex and water classes were derived separately and superimposed on the VCF strata.
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Remotely sensed variations may occur across the Landsat
scene due to atmospheric scattering and surface anisotropy
combined with variations in the viewing and solar geometry.
The Landsat sensor, with its comparatively narrow field of view,
is not as affected by surface anisotropic effects as wider field of
view sensors, such as MODIS (Schaaf et al., 2002). However,
systematic remotely sensed variations across the Landsat scene
are sometimes evident and attempts to remove them using a
variety of techniques have been implemented (Danaher et al.,
2001; Toivonen et al., 2006). In our Landsat analysis, and in
other Landsat research (Danaher et al., 2001; Toivonen et al.,
2006), these variations appear greatest across scan rather than
along track. For Landsat data, sensor view zenith angle, or scan
angle, is the portion of the sun-sensor-target geometry that
varies most across the scene. A simple linear regression rela-
tionship between the Landsat spectral response and the Landsat
cross-track pixel location is estimated for each reflective band
as:

y ¼ b0 þ b1 4 x ð1Þ

where y equals the DOS normalized Landsat digital number for
a given reflective wavelength band, x is the cross-track
(column) pixel value, b1 is the slope of the linear regression
function in digital numbers per cross-track pixel, and b0 is the
intercept. Rather than compute this relationship over all the
Landsat pixels, which may have different surface anisotropy
and different atmospheric contamination characteristics, the
relationship is computed only for Landsat pixels falling under
the 250 m MODIS unambiguous intact forest pixels. All the
pixels of the DOS normalized Landsat data are then adjusted
using this relationship. This process is repeated independently
for each reflective band.

4.5. Landsat cloud, shadow and water flagging

Automated methods for flagging cloud and shadow effects are
a requirement for large-volume Landsat processing (Helmer and
Ruefenacht, 2005). Landsat cloud fraction metadata are not
spatially explicit and the cloud detection algorithm was not de-
signed to generate per-pixel cloud masks (Irish et al., 2006).
Consequently, in this study, a regional cloud and shadowmasking
classification tree was developed to classify clouds and shadows
into low, medium and high-confidence categories. Water bodies
must also be identified as they can be confused spectrally with
dense dark vegetation and shadows.

Training data were developed from 9 Landsat images to
differentiate cloud, shadow and land pixels. Landsat bands 4, 5, 6
and 7 and all combinations of possible 2 band simple ratios were
used as inputs to two classification trees classifying these data
independently into cloud and shadow classes. The trees were
applied to each normalized Landsat scene and the class member-
ship likelihood values used to define per Landsat pixel a low,
medium or high cloud/shadow quality assessment state. Repeated
shadow flags for a given pixel were used with topographical data
(Rabus et al., 2003) to flag water. To reduce the impact of edge
effects, a one-pixel (57 m) buffer around the high-confidence

cloud and shadow pixels was created using the morphological
dilate operator (Serra, 1982) and made into an additional quality
assessment state. In total, four cloud/shadow quality assessment
states were defined for each geometrically corrected and normal-
ized Landsat scene pixel: 1) high presence cloud/shadow/water, 2)
buffered high presence cloud/shadow/water, 3) medium presence
cloud/shadow, and 4) low presence cloud/shadow.

4.6. Landsat forest mapping

A classification tree approach was used to estimate per-pixel
forest likelihoods for each geometrically corrected and normal-
ized Landsat acquisition (Table 1). Tree models were generated
independently for each Landsat acquisition with the MODIS
forest non-forest class labels as the dependent variable and the
Landsat data as the independent variable. Training data were
defined automatically by sampling from the interiors of the
MODIS forest and non-forest mapped areas, derived by eroding
the MODIS forest and non-forest classes by the equivalent of two
250 m pixels using the morphological erode operator (Serra,
1982). These training data were assumed to be applicable to the
older (pre-2000) Landsat data as rates of forest change in Central
Africa are sufficiently low that change is not readily reflected in
the interiors of MODIS forest and non-forest mapped areas.
Landsat bands 4, 5 and 7, and simple ratios of these bands were
used as inputs. In addition, per-pixel local variances and local
means for a 3 by 3 kernel were added to the input variable data set.

The per node likelihoods, not class labels, were retained from
30 independently generated decision tree runs. All trees were
perfectly fit and run independently on a sample of approximately
30,000 training pixels per Landsat acquisition to generate an
average forest likelihood per pixel. This has the effect of gener-
alizing the relationship between theMODIS labels and theLandsat
spectral measures, overcoming the frequent, yet minority occur-
rence of mislabeling. The forest and non-forest training categories
were proportionately sampled according to their relative presence
in the corresponding MODIS map in order to reduce training bias.

4.7. Landsat compositing

Compositing is a practical way to reduce residual cloud
contamination, fill missing values, and reduce the data volume of
moderate resolution near-daily coverage sensor data such as
AVHRR or MODIS (Holben, 1986; Cihlar, 1994; Roy, 1997).
Compositing of higher spatial but lower temporal resolution
satellite data, such as Landsat, is not normally undertaken how-
ever because of high data costs and because the land surface state
may change in the period required to sense several acquisitions. In
this study, the Landsat data were composited into two periods,
pre-1996 and post-1996. The year 1996 was selected because for
all but one scene (path 182 row 058, Table 1) there were at least
two pre-1996 and two post-1996 Landsat acquisitions available.

A per-pixel Landsat compositing scheme based on selecting
the date with the lowest cloud and shadow likelihood values
was applied to the Landsat acquisitions (Table 1). When more
than one acquisition date had the same cloud and/or shadow
likelihood, the date that had a normalized digital number value
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closest to the 100 reference value was selected. In this way the
number of cloud and shadow contaminated pixels was reduced
and dates with forest pixels were preferentially selected. The
date of the selected acquisition and the corresponding forest
likelihood, cloud and shadow likelihood, and spectral band
values were retained. This compositing approach was applied
independently to pre-1996 and post-1996 Landsat acquisitions,
providing two composited Landsat time periods or epochs.

4.8. Landsat deforestation mapping

We employ a multi-date direct classification of change
methodology (Bruzzone and Serpico, 1997; Coppin et al.,
2004). This approach requires that training data are available at
the same surface locations in all dates and that they reflect
reliably the proportions of the change transitions across the
landscape. Forest is directly characterized using both the pre-
1996 and the post-1996 forest likelihood and spectral com-
posited data as inputs.

Landsat training data were identified by photo-interpretation
of the two composited periods to identify deforested and
unchanged pixels. A total of 37,000 training pixels were defined
from the equivalent of six Landsat path/rows across the three
landscapes. The training data were selected without considera-
tion of the forest likelihood values, although the cloud, water
and shadow quality assessment flags were used to avoid
selection of contaminated pixels. For each training pixel the
composited pre-1996 and post-1996 forest likelihood and spec-
tral band data, and their per-pixel differences and smoothed ver-
sions of the differences (generated using a 3×3 averaging filter)
were derived.

The same bagged classification tree methodology used to
produce the forest likelihood results (Section 4.6) was employed.
Per node likelihoods from 30 independently generated perfectly
fit tree runs were used to generate an average per-pixel defores-
tation likelihood for each Landsat pixel. The proportion of de-
forested to unchanged training pixels was approximately 1:3,
resulting in a significantly oversampled deforestation proportion,
and a positive bias of the deforestation likelihood values.

5. Results

5.1. MODIS 250 m forest non-forest mapping

The MODIS 250 m forest cover map is shown in Fig. 3b.
Tabular results per country are shown in Table 3. In general, the

product captures the mosaic of human disturbance within the
Basin. Zones of disturbance (rural complex) include the belt of
higher population densities along the southern forest fringe, 3–5°
latitude south, and in theAlbertineRift Valley along the borders of
Uganda, Rwanda, Burundi and the Democratic Republic of the
Congo (DRC), where rich volcanic soils are present. Disturbance
within the forest massif traces road networks and is generally
spatially coherent. In the transition zones north and south of the
forest, settlement patterns in the form of roads and towns are
clearly evident within the mosaic gallery forests, secondary grass-
lands, parklands and woodlands.

Comparisons were made with the Global Land Cover 2000
Africa product derived using SPOTVEGETATION data (Mayaux
et al., 2004). Fig. 4 illustrates the aggregate forest cover estimates
and per-pixel agreement for the 6 most forested Congo Basin
countries. Comparisons were made for forest, non-forest and rural
complex, as this is the key disturbance category at coarse spatial
resolutions.Overall per-pixel agreement for these three classeswas
82.7%. Highest disagreement per pixel was related to the differing
spatial resolution of the products. The GLC2000 map has a 1 km

Table 3
Land cover derived from the MODIS 250 m Congo Basin Forest Cover Map (Fig. 3) by country (Eq. Guinea = Equatorial Guinea, R. Congo = Republic of Congo
CAR = Central African Republic, and DRC = Democratic Republic of the Congo)

Country Total area (in 1000′s of square km) Forest Woodland Parkland Non-treed Rural complex Inland Water

Cameroon 466 197 68 91 61 44 5
Eq. Guinea 25 18 0 0 0 6 0
Gabon 265 210 4 1 15 31 5
R. Congo 342 208 24 7 66 32 4
CAR 620 82 301 194 25 18 1
DRC 2328 1105 463 279 187 246 47

Fig. 4. Comparison of MODIS 250 m and GLC2000 1 km forest cover maps for
aggregate forest and rural complex area estimates per country (black and gray
bar scale) and per-pixel overall agreements for forest, non-forest and rural
complex classes per country (percentages in parentheses).
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spatial resolution while the MODIS map of this study has a 250 m
spatial resolution. This leads to varying depictions of the rural
complex class which is manifested at relatively finer scales. While
forest and non-forest agreements were 85.7 and 82.2%, respec-
tively, rural complex agreed only 46.7% of the time. Regionally,
the area of greatest disagreement was in the heavily cloud-affected
regions nearest the Gulf of Guinea in Cameroon, Equatorial
Guinea, Gabon and the two Congos. Radar data would be a
valuable alternative data source for overcoming the persistent
presence of cloud cover within these areas (Saatchi et al., 2002;
DeGrandi et al., 2002).

5.2. Landsat normalization

Fig. 5 illustrates mosaiced Landsat normalization results for
six Landsat scenes covering the Maringa–Lopori–Wamba
landscape (Landscape 8 in Fig. 1) acquired at different dates
over a 3-year period. The MODIS 250 m forest non-forest map
(Fig. 5a), top of atmosphere uncalibrated Landsat (Fig. 5b),
dark-object subtraction (DOS) adjusted Landsat data (Fig. 5c),
and DOS and anisotropy-adjusted data (Fig. 5d) are illustrated.
Evidently, these processing steps incrementally improve the
appearance of the data, providing a more coherent mosaiced

data set. To consider the quantitative impact of this processing
on forest mapping capabilities, a test was applied to the forest
and non-forest training data for the Maringa–Lopori–Wamba

Fig. 5. Scene mosaicing after using MODIS VCF forest mask to drive Landsat interscene normalization where a) is the MODIS 250 m forest non-forest map (Green =
Forest, Beige = Aggregated non-forest classes, Black = buffered border pixels, and Blue = water), b) is the Landsat digital numbers for 6 path/rows using post-1996
imagery (see Table 1), shown in bands 4 (0.78–0.90 μm), 5 (1.55–1.75 μm), and 7 (2.09–2.35 μm)., c) is the dark-object subtraction (DOS) adjusted mosaic and d) is
the DOS and anisotropy-adjusted mosaic.

Fig. 6. Misclassification rate of MODIS labels as modeled by perfectly fit
decision trees using different Landsat inputs for the Maringa–Lopori–Wamba
landscape.
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Fig. 7. Variation in the slope of the linear regression function (expressed in digital numbers per cross-track pixel), see Eq. (1), used to adjust the dark-object subtraction
corrected Landsat data for anisotropic effects. Results for all the Landsat data used in the study are shown, plotting against the day of Landsat acquisition and showing
the nominal solar geometry of each acquisition.
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landscape. Over 400,000 MODIS labeled Landsat pixels were
run through a perfectly fit decision tree algorithm to evaluate the
different inputs of Fig. 5 for characterizing forest cover. The
ability of the decision tree to discriminate the forest/non-forest
cover categories is quantified and illustrates the increased
generalization and internal consistency of the multi-spectral
feature space achieved through the normalization process. Fig. 6
illustrates decreasing misclassification rates, respectively, for
the top of atmosphere uncalibrated Landsat digital numbers, the
DOS-adjusted, and the DOS and anisotropy-adjusted data. The
DOS and anisotropy-adjusted inputs reduce the misclassifica-
tion rate by one-quarter compared to the uncalibrated digital
number inputs.

Fig. 7 shows the slope of the linear regression function
(expressed in digital numbers per cross-track pixel location),
used to adjust the dark-object subtraction corrected Landsat data
for anisotropic effects, for all the Landsat data used in the study.
The slopes are all significant for all Landsat scenes, with p-
values of less than 0.001. The slopes are plotted as a function of
the day of Landsat acquisition and with the corresponding solar
geometry. There appears to be, for the reflective bands used, a
seasonal variation in the strength of the relationship, with more
pronounced cross-track adjustments during and near the solar
equinoxes. These temporally varying effects may be related to
changes in shadowing with changing solar geometry, seasonal
atmospheric effects, and/or seasonal phenological variations.
More study is required in order to attribute their cause(s).

5.3. Landsat cloud, shadow and water flagging

In generating the cloud classification tree, simple ratios of
band 6 to bands 4 and 7 were the most important discriminatory
variables explaining the majority of the decision tree deviance.
The ratios are analogous to an albedo versus temperature
measure that identifies bright, cool targets that are most likely to
be clouds in the humid tropics. For the shadow model, band 5
was the primary discriminatory variable explaining more than
86% of the tree variance. Upon visual inspection, the results
were found to be generally robust, save for two of the 1998
Landsat scenes, where it was necessary to manually remove
shadows that remained undetected over highly reflective
secondary grasslands. The vast majority of composited pixels
were rated with high quality assessment states. For example,
Maringa–Lopori–Wamba featured the following pre-1996 QA
distribution: 93.75% low clouds/shadows, 2.04% medium
clouds/shadows, 1.67% water (derived from repeated high
shadow flags), 1.91% buffered high clouds/shadows, and
0.23% high clouds/shadows.

5.4. Landsat forest mapping

Each Landsat scene in Table 1 was processed independently
using the classification tree bagging approach. Results from this
mapping process were used as inputs to the subsequent com-
positing and change mapping procedures. As it is not feasible to

Fig. 8. Comparison of discriminatory power of spectral inputs to mapping forest likelihood per Landsat pixel as a percentage of total explained deviance from the
bagged classification trees per path/row for Maringa–Lopori–Wamba. Inputs are as follows: 1–3) dark-object subtraction (DOS) adjusted bands 4, 5 and 7, 4–6) local
variance of DOS-adjusted bands 4, 5 and 7, 7–9) DOS and anisotropy-adjusted bands 4, 5 and 7, 10–12) ratios of band4/band5, band4/band7, and band5/band7 of
DOS and anisotropy-adjusted bands 4, 5 and 7. 13–15) ratios of local variances for band4/band5, band4/band7 and band5/band7 of DOS-adjusted bands 4, 5 and 7.

2506 M.C. Hansen et al. / Remote Sensing of Environment 112 (2008) 2495–2513



Author's personal copy

illustrate the results for 98 Landsat scenes, an assessment of which
spectral inputs contributed most to discriminating between the
forest and non-forest categories is presented here. For each
spectral input, the deviance reduction per-split, summed over all
bagged trees for all images per path/row, was derived to provide a
relative measure of discriminatory strength. Fig. 8 summarizes for
the Maringa–Lopori–Wamba landscape which spectral informa-
tion drove the forest characterizations. These results reveal again
the utility in performing the DOS and anisotropy adjustment and

the importance of the near-infrared (band 4) and mid-infrared
(band 5) in characterizing forest/non-forest. Band 5 is most sen-
sitive to the simple presence/absence of tree canopy, while band 4
provides additional information between regrowing/disturbed and
intact tree stands. As the objective here is to map the mature forest
lands and their modification through time, band 4 is the infor-
mation source that largely drives the classification tree algorithm.

5.5. Landsat compositing

The Landsat forest likelihood images were composited fol-
lowing the methodology described in Section 4.7 into pre-1996

Fig. 9. Landsat composite of all post-1996 Landsat imagery for bands 5 (1.55–1.75 μm), 4 (0.78–0.90 μm), and 7 (2.09–2.35 μm) covering the three CARPE
landscapes included in this study (outlined in red).

Fig. 10. Spectral plots from Landsat data for epochal 1990 and 2000 thematic
classes as labeled byMODIS 250m forest and non-forest masks. Bars represent ±
two standard deviations around mean spectral values.

Table 4
Confusion matrix indicating the level of agreement in square kilometers of
MODIS-derived forest/non-forest training labels and derived Landsat forest
likelihood classes thresholded at N=50% likelihood for forest and b50% for
non-forest

Landsat
non-forest

Landsat forest Percent agreement
per class

a)
MODIS non-forest 8369.6 6009.5 2360.2 71.8%
MODIS forest 125,538.1 2082.7 123,455.4 98.3%

8092.1 125,815.6

b)
MODIS non-forest 8369.6 6199.6 2170.0 74.1%
MODIS forest 125,538.1 1878.2 123,659.9 98.5%

8077.8 125,829.9

Results are for the Maringa–Lopori–Wamba landscape. a) is for 1990 epochal
Landsat imagery, b) is for 2000 epochal Landsat imagery. This table reflects only
areas not identified as change. See Fig. 11 for a spatially explicit example.

2507M.C. Hansen et al. / Remote Sensing of Environment 112 (2008) 2495–2513



Author's personal copy

and post-1996 epochal data sets. An example of a composite
epochal image product is shown in Fig. 9 for the region including
the three landscapes presented in this study (Fig. 1). This figure
reveals the regional consistency achieved by the MODIS-driven
per-pixel Landsat normalization and compositing procedures.
Radiometric inconsistencies along Landsat scene boundaries are
largely absent and the data are largely cloud free except for those
locations that were persistently cloudy in every Landsat scene
acquisition. The patterns of human settlement and road infra-
structure through the forestmassif (bright green–high reflectance)
and the savannas and grasslands to theNorth and South (magenta)
are clearly evident. The most significant deleterious result from
the compositing process is the rare preferential selection of
unflagged shadows occurring over non-forest cover types
(Section 5.3).

Fig. 10 shows the Landsat forest and non-forest cover training
spectral signatures (means and standard deviations) derived under
the MODIS 250 m forest/non-forest labels for the pre-1996 and
post-1996 Landsat epochs covering the 3 landscapes. Although
this description of the spectra greatly oversimplifies their actual
distributions, it is evident that the 250mMODIS labels do capture
spectrally distinct forest and non-forest cover types at the Landsat
scale across the region. To check this, a confusion matrix
summarizing the level of agreement between the MODIS 250 m
forest/non-forest classification training labels and the correspond-
ing composited Landsat forest likelihood values was generated.
Table 4 summarizes confusionmatrices for the pre-1996 and post-
1996 composites of the Maringa–Lopori–Wamba landscape.
Each confusion matrix was generated by comparing every 57 m
Landsat pixel with the corresponding 250 m MODIS pixel sub-

Fig. 11. Example Landsat (left column) and MODIS/Landsat cover comparison (right column) data for a 70 km by 35 km subset of the Maringa–Lopori–Wamba
landscape centered on 22.73° E and 0.36° N. Landsat bands 5 (1.55–1.75 μm), 4 (0.78–0.90 μm), and 7 (2.09–2.35 μm) are shown in the left column where a) is 1990
composite and c) is 2000 composite imagery. The MODIS/Landsat cover comparison data in the right column are a visual confusion matrix for b) 1990 and d) 2000,
colored as follows: Black— Eroded MODIS map pixels not used in training; Gray—MODIS forest/Landsat forest likelihood N=50%; White—MODIS non-forest/
Landsat forest b50% likelihood; Dark green on white background— MODIS non-forest/Landsat forest N=50%; Orange on gray background— MODIS forest/
Landsat forest b50% likelihood. At bottom, e) is 2000 composite Landsat imagery with identified forest clearing change pixels superimposed in red and f) is MODIS
forest (white) and non-forest (gray) training labels with Landsat change pixels superimposed in red.
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sampled to 57 m, ignoring all cloud, shadow, water and change
pixels. Landsat pixels were considered as “forest” if their forest
likelihood was ≥50%.

In the confusionmatrices, (Table 4) it is evident that more than a
quarter of the MODIS non-forest labels have a Landsat forest
likelihood greater than 50%. An explanation of this apparent
confusion is seen in Fig. 11, which illustrates the degree of
agreement between the MODIS 250 m and Landsat 57 m forest/
non-forest training and classification results for a 70×35 km subset
of the Maringa–Lopori–Wamba landscape. The top and middle
rows of Fig. 11 show imagery and forest training/mapping results
for pre- and post-1996 periods respectively. The MODIS 250 m
forest training labels (Fig. 11, b and d, gray and orange) perform

well as a reference source for classifying the 57 m Landsat pixels
(Fig. 11, a and c), largely due to the homogeneous nature of the
forest tracts. However, this is not the case for the non-forest due to
the heterogeneous nature of the settled areaswhich include remnant
riparian forests and mature tree cover within long-settled village
boundaries (Fig. 11, a and c). The decision tree bagging procedure
is insensitive to the significant portion of non-forest training error
(apparent mislabels in the non-forest class). Consequently, at the
Landsat scale, forest canopies falling within MODIS non-forest
training pixels generally are labeled correctly as forest (Fig. 11, b
and d, green). The decision tree classifier's ability to not be
adversely affected by this scale-related training confusion is critical
to the integration of the Landsat and MODIS data.

Fig. 12. Forest likelihood and forest change map for Maringa–Lopori–Wamba, Sangha Tri-National, and Salonga–Lukenie–Sankuru CARPE landscapes, where a) is
Congo Basin overview with MODIS map in grayscale, b) is a zoom on the Maringa–Lopori–Wamba product, and c) is a full-resolution zoom on a locale in the north of
this landscape.
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5.6. Landsat forest change mapping

A final binary deforestation map was generated by thresh-
olding the 57 m Landsat pixel deforestation likelihood values.
Due to the positive bias in the frequency of deforestation training
data, the binary deforestation map was generated by threshold-
ing the deforestation likelihood values with a 30% rather than
50% threshold. This threshold was found by interactive analysis
and evaluation of the model on the entirety of the input data. The
composited dates for each deforested pixel were retained to
enable subsequent calculation of deforestation rates.

Fig. 11, e and f, shows the pre-1996 to post-1996 Landsat
forest change results (red) for the 70×35 km subset of the
Maringa–Lopori–Wamba landscape. Most new change occurs
adjacent to prior clearings as subsistence agricultural systems
expand into primary forest zones. This expansion along roads and
at settlement boundaries is a well known phenomenon in tropical
systems. Small and isolated change sites are also prevalent across
the landscapes, and are primarily related to resource extraction
activities including mining and hunting. These findings are seen
across all threemapped landscapes. Fig. 12 shows the pre- to post-
1996 forest change results (red) superimposed on post-1996 forest
likelihood data at three scales: all three landscapes (top), the
Maringa–Lopori–Wamba landscape (middle) and a full-resolu-
tion subset of the Maringa–Lopori–Wamba landscape (bottom).
The patterns of forest change in Fig. 12 are similar to those
observed in the bottom of Fig. 11. In addition, linear commercial
logging roads are evident (bottom Fig. 12). However, logging
roads are not consistently detected as change because the road
construction usually does not occur coincident with Landsat data
acquisition, roads are usually considerably narrower than a 57 m
Landsat pixel, and are quickly obscured by regrowing forest
canopy.

Table 5 summarizes the Landsat mapped forest area and
change summary statistics for the three Congo Basin land-
scapes; pre-1996 to post-1996. Rates of change were calculated
using the composite change products and represent change over
the average per change pixel time interval recorded from the
composite date layers (Section 4.8). The change rates are rela-
tively low compared to other humid forest change hot spots
such as Insular Southeast Asia and the Legal Amazon (Achard
et al., 2002; Hansen and DeFries, 2004). The Maringa–Lopori–
Wamba landscape exhibits the most marked change of the three
landscapes studied, a loss of 693 km2, equivalent to about 1% of
the landscape over an approximately 13.5 year period, which is
most likely related to the greater degree of human settlement in
and around this landscape. The dominant change dynamic is an
expansion of rotational agricultural activities along the primary
trunk roads. Forest cleared for hunting camps is also depicted, and
all three landscapes exhibit commercial logging activities.

Forest boundary length (edge) was calculated by creating a
forest/non-forest interface using a 50% threshold of the pre- and
post-1996 forest likelihood maps where only flagged change
pixels are used to identify new forest edge. The forest edge cri-
terion reveals themost dramatic change associatedwith logging to
be found in the Sangha Tri-National landscape. While the pro-
portion of forest area cleared from 1990 to 2000 is not as great as

the other two landscapes, the wide-ranging incursion of road net-
works and associated extraction activities of commercial logging
are clearly manifested. For this landscape, large areas of pre-
viously inaccessible forest have been opened up for exploitation.
This change dynamic is captured in the forest edge metric of
Table 5, where the measured forest edge within the landscape has
increased by nearly 30% between 1990 and 2000.

6. Discussion

By relying on MODIS thematic maps as reference informa-
tion, several limitations of past regional mapping procedures
have been addressed, as the MODIS data allow for radiometric
normalization of the Landsat inputs, and for the use of MODIS
labels as regional training data. Using MODIS to normalize and
label Landsat inputs allows for a standard processing stream that
increases the internal consistency of the regional-scale cover
characterizations. This multi-resolution methodology is porta-
ble, but requires study areas where the moderate and high spatial
resolution thematic classes are the same and few in number, and
where the land cover classes are spatially homogenous at scales
larger than several moderate resolution pixels. In this study,
these conditions are met as the Congo Basin region encompasses
forest and non-forest areas that are homogeneous at the MODIS
pixel scale. The standard error of the global MODIS Vegetation
Continuous Fields product for sites tested to date is 11.5%,
indicating an accuracy sufficient for identifying the broad tree
cover strata required to map forest cover and change within the
Congo Basin (Hansen et al., 2002b; Carroll et al., in review).

Aside from the relative coarseness of the moderate spatial
resolution data, limitations for forest cover mapping withMODIS
data typically relate to three considerations. First, persistently
cloudy areas impact the quality of the MODIS input data and

Table 5
Landsat mapped forest area and change summary statistics for the three Congo
Basin landscapes (Fig. 1); pre-1996 to post-1996

Maringa–Lopori–
Wamba

Salonga–Lukenie–
Sankuru

Sangha
Tri-National

Landscape area (km2) 74,973 101,820 36,241
Forest area circa
1990 (km2)

70,610 97,900 35,507

Forest area circa
2000 (km2)

69,918 97,522 35,357

Non-Forest area
circa 1990 (km2)

4041 3415 546

Non-Forest area
circa 2000 (km2)

4734 3793 696

% forest area loss
1990–2000

0.98 0.39 0.42

Forest edge 1990 (km) 75,508 66,573 16,403
Forest edge 2000 (km) 81,938 69,723 21,226
% forest edge increase
1990–2000

8.52 4.73 29.40

Mean interval for change pixels in Maringa–Lopori–Wamba is 13.54 years,
Salonga–Lukenie–Sankuru is 12.18 years and Sangha Tri-National is
12.53 years. Areas are actual mapped quantities without regard to per-pixel
time one and time two observation dates. Percent forest area loss has been
normalized using the per-pixel observation dates to a 1990 to 2000 interval.
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resultant mapping quality. To overcome this problem, four years
of inputswere used tomap theCongoBasin. Second, the accuracy
of the MODIS map is reduced as tree cover decreases from dense
forests to woodlands and parklands (Hansen et al., 2000). Our
expectation is that for densely covered intact forest biomes, such
as the tropical forest realm ofCentral Africa, theMODISmapwill
be robust and sufficient as a reference data set. Third, herbaceous
and shrub covered wetlands are inconsistently mapped, and can
introduce error, particularly errors of change commission in
herbaceous wetlands. Ongoing work is aimed at generating a
wetlands mask to remove these confounding areas from the
change analyses.

While this study has presented a new methodological approach
to mapping Landsat-scale data sets using the MODIS percent tree
cover products for calibration, the accuracy of the results have not
been fully assessed. Limitations of Landsat-scalemapping relate to
errors of change commission within herbaceous wetlands and to
isolated residual cloud and shadow effects. However,many aspects
of the study provide confidence in the methods. The increased
separability and training accuracy of forest and non-forest classes
due to the dark-object subtraction (DOS) and anisotropy adjust-
ments indicates an improved mapping capability with Landsat
data. The additional fact that the classification tree models pri-
marily employ the DOS and anisotropy-adjusted bands to map
forest and non-forest at the Landsat scale also validates theMODIS
labels and pre-processing steps. The ability to generate regional
seamless mosaics points the way towards mass processing of
Landsat-scale images for land cover characterization applications.

7. Conclusion

This paper presents a multi-resolution methodology to map
forest cover and deforestation at Landsat scale, demonstrating it
for 0.56 million km2 of the Congo River Basin. Typical Landsat-
scale studies use a single “best” image tomap forest cover state for
a given year or decade. This is arguably due to high data costs and
the difficulty of combining multi-temporal Landsat acquisitions.
The method described here demonstrates an ability to auto-
matically process multi-resolution, multi-date imagery. Initial
results indicate that the Congo River Basin is an ecosystem absent
of the large-scale clearing found in other humid tropical forest
zones, such as the Legal Amazon and Insular Southeast Asia
(Achard et al., 2002; Hansen and DeFries, 2004). However, the
mapped region indicates that forest clearing is spatially pervasive
and fragmented, with significant implications for sustaining the
region's biodiversity. Frontier forests absent of human impact are
not widespread in the Congo Basin, unlike some remaining forest
tracts in the interior of the Amazon or New Guinea highlands.
Given this fact, identifying new incursions into remaining intact
forests is important for CARPE project partners. To this end, the
current approach is being extended to 2005 using Landsat 7 Scan
Line Corrector-off data.

The method described here is meant to be an operational
alternative to large area deforestation mapping at high spatial
resolutions. Full automation is primarily a function of the quality
of the input imagery. If there is a limitation regarding the usability
of the results that is directly related to image quality, another

image is purchased and placed in the processing stream. The
approach raised a current major limitation of large area moni-
toring with high spatial resolution data, namely the cost of
imagery. Archives of high resolution data, whether SPOT HRV,
IRS-LISS, or especially Landsat, are extensive but underutilized
for this purpose due primarily to cost constraints. Operational
environmental monitoring, a term often used as an objective
within the remote sensing science community, is not feasible
given the current cost structure for high spatial resolution data. For
remote areas such as the Congo Basin, earth observation data are
the only source of information for documenting land cover and
land use change. Improving data access, minimizing data costs
and operationalizing sensor missions is the only way to ensure
timely and accurate monitoring of such areas.
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